metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

He-Dong Bian, Wen Gu, Shi-Ping Yan,* Dai-Zheng Liao and Zong-Hui Jiang

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: eagletiger@vip.sina.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.015 Å R factor = 0.046 wR factor = 0.124 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichloro(*N*,*N*-dimethylethylenediamine)cadmium(II): a novel two-dimensional chloro-bridged coordination polymer

Polymeric dichloro(N,N-dimethylethylenediamine)cadmium-(II), [CdCl₂(C₄H₁₂N₂)]_n, has been synthesized and characterized by single-crystal X-ray diffraction. The two-dimensional polymeric sheet structure involves 12-membered zigzag rings formed by chloro bridges. Received 20 January 2003 Accepted 13 February 2003 Online 21 February 2003

Comment

With the development of the inorganic coordination chemistry of supramolecular and polymeric networks, there has been a growing interest in the synthesis of coordination polymers, using various ligands which can provide inner cavities or networks of a desired size (Jung *et al.*, 1998; Tapas *et al.*, 2001; Gable *et al.*, 1990). As a terminal ligand, *N*,*N*-dimethylethylenediamine can form supramolecular complexes with other bridging ligands, such as azide and thiocyanate (Mondal *et al.*, 2000).

In this paper, we describe the chloro-bridged two-dimensional polymeric sheet structure of the cadmium complex polymeric dichloro(N,N-dimethylethylenediamine)cadmium-(II), (I).

The structure of (I) is shown in Fig. 1. Tables 1 and 2 list selected geometrical and hydrogen-bond data. The Cd atom in the polymer is in a distorted octahedral environment, coordinated by one bidentate amine ligand and four Cl atoms. Each unit of the complex consists of a $[Cd(dmen)]^{2+}$ cation (dmen is N,N-dimethylethylenediamine) with two monochloro and one dichloro bridging groups. Cd-Cd distances of 4.800 (3) and 3.873 (3) Å strongly suggest that no direct Cd-Cd bond interaction is present in this structure. The Cd-Cl distances are in the range 2.533 (3)–2.748 (3) Å. The two-dimensional polymeric sheets of the complex are shown in Fig. 2. The dimeric subunit that is formed by a dichloro bridge is further linked to neighbouring molecules by two monochloro bridges. Because of the difference between the chloro bridges, a 12membered zigzag ring, as well as a four-membered ring, are formed (Fig. 3). There are three real Cd···Cd diagonals dividing the rings exactly into two halves, the longer diagonal is 10.015 Å (Cd1B···Cd1E) and two shorter ones are 6.821 $(Cd1\cdots Cd1D)$ and 8.607 Å $(Cd1A\cdots Cd1C)$. There is a hydrogen bond of length 3.300 (8) Å involving N1 of the

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the molecular structure of the title complex, with the atomnumbering scheme and 30% displacement ellipsoids. H atoms are not shown.

Figure 2 The two-dimensional polymeric sheet of the title complex.

terminal ligand as donor and Cl1ⁱⁱⁱ as acceptor. The second H atom on N1 does not participate in any hydrogen bonding.

Experimental

Dmen (0.5 mmol) in 10 ml MeOH was added to a solution of CdCl₂·2.5H₂O (0.5 mmol) in 5 ml MeOH and 1 ml H₂O. Colourless single crystals suitable for X-ray analysis were separated after several weeks.

Crystal data

$\begin{bmatrix} CdCl_2(C_4H_{12}N_2) \end{bmatrix} \\ M_r = 271.46 \\ Monoclinic, P2_1/c \\ a = 9.455 (9) Å \\ b = 6.731 (6) Å \\ c = 13.399 (12) Å \\ \beta = 97.002 (15)^{\circ} \\ V = 846.3 (13) Å^3 \\ Z = 4 \end{bmatrix}$	$D_x = 2.130 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 3239 reflections $\theta = 2.2-25.0^{\circ}$ $\mu = 3.13 \text{ mm}^{-1}$ T = 293 (2) K Rhombic block, colourless $0.25 \times 0.20 \times 0.15 \text{ mm}$
Data collection Bruker SMART 1K CCD diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.508, T_{max} = 0.651$ 3239 measured reflections	1484 independent reflections 1172 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 25.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -8 \rightarrow 7$ $l = -8 \rightarrow 15$

Figure 3

A view of the structure of the title complex, showing the 12-membered and four-membered rings that form the polymer.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0724P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.5378P]
$wR(F^2) = 0.125$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.013$
1484 reflections	$\Delta \rho_{\rm max} = 1.01 \text{ e } \text{\AA}^{-3}$
82 parameters	$\Delta \rho_{\rm min} = -1.33 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cd1-N1	2.294 (7)	Cd1-Cl2	2.553 (3)
Cd1-N2	2.417 (7)	Cd1-Cl1 ⁱ	2.643 (3)
Cd1-Cl1	2.533 (3)	Cd1-Cl2 ⁱⁱ	2.748 (3)
N1-Cd1-N2	76.3 (2)	Cl1-Cd1-Cl1 ⁱ	90.32 (6)
N1-Cd1-Cl1	164.5 (2)	Cl2-Cd1-Cl1 ⁱ	91.28 (8)
N2-Cd1-Cl1	90.96 (17)	N1-Cd1-Cl2 ⁱⁱ	83.71 (19)
N1-Cd1-Cl2	92.67 (19)	N2-Cd1-Cl2 ⁱⁱ	92.61 (17)
N2-Cd1-Cl2	168.96 (17)	Cl1-Cd1-Cl2 ⁱⁱ	88.24 (8)
Cl1-Cd1-Cl2	99.96 (7)	Cl2-Cd1-Cl2 ⁱⁱ	86.20 (8)
N1-Cd1-Cl1 ⁱ	98.33 (19)	Cl1 ⁱ -Cd1-Cl2 ⁱⁱ	176.83 (7)
N2-Cd1-Cl1 ⁱ	90.24 (18)		

Symmetry codes: (i) $2 - x, \frac{1}{2} + y, \frac{3}{2} - z$; (ii) 2 - x, -y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1C \cdot \cdot \cdot Cl1^{iii}$	0.90	2.43	3.300 (8)	163
Symmetry code: (iii) x	1 + v, z.			

H atoms were positioned geometrically and refined using a riding model, with C-H = 0.97 Å for CH₂, C-H = 0.96 Å for CH₃ and N-H = 0.90 Å.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). *SMART* (Version 5.0) and *SAINT* (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Gable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. 1677–1678.
- Jung, O. S., Park, S. H., Kim, D. C. & Kim, K. M. (1998). Inorg. Chem. 37, 610– 611.
- Mondal, N., Mitra, S., Gramlich, V. & Saha, M. K. (2000). J. Chem. Soc. Dalton Trans. pp. 3218–3221.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Tapas, K. M., Partha, S. M., Talal, M., Joan, C. B. & Nirmalendu, R. C. (2001). J. Chem. Soc. Chem. Commun. pp. 1012–1013.